1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
|
import { Job, Worker } from "bullmq";
import { and, eq, inArray } from "drizzle-orm";
import OpenAI from "openai";
import { z } from "zod";
import { db } from "@hoarder/db";
import { bookmarks, bookmarkTags, tagsOnBookmarks } from "@hoarder/db/schema";
import serverConfig from "@hoarder/shared/config";
import logger from "@hoarder/shared/logger";
import { readAsset } from "@hoarder/shared/assetdb";
import {
OpenAIQueue,
queueConnectionDetails,
SearchIndexingQueue,
ZOpenAIRequest,
zOpenAIRequestSchema,
} from "@hoarder/shared/queues";
const openAIResponseSchema = z.object({
tags: z.array(z.string()),
});
async function attemptMarkTaggingStatus(
jobData: object | undefined,
status: "success" | "failure",
) {
if (!jobData) {
return;
}
try {
const request = zOpenAIRequestSchema.parse(jobData);
await db
.update(bookmarks)
.set({
taggingStatus: status,
})
.where(eq(bookmarks.id, request.bookmarkId));
} catch (e) {
console.log(`Something went wrong when marking the tagging status: ${e}`);
}
}
export class OpenAiWorker {
static async build() {
logger.info("Starting openai worker ...");
const worker = new Worker<ZOpenAIRequest, void>(
OpenAIQueue.name,
runOpenAI,
{
connection: queueConnectionDetails,
autorun: false,
},
);
worker.on("completed", async (job) => {
const jobId = job?.id || "unknown";
logger.info(`[openai][${jobId}] Completed successfully`);
await attemptMarkTaggingStatus(job?.data, "success");
});
worker.on("failed", async (job, error) => {
const jobId = job?.id || "unknown";
logger.error(`[openai][${jobId}] openai job failed: ${error}`);
await attemptMarkTaggingStatus(job?.data, "failure");
});
return worker;
}
}
const IMAGE_PROMPT_BASE = `
I'm building a read-it-later app and I need your help with automatic tagging.
Please analyze the attached image and suggest relevant tags that describe its key themes, topics, and main ideas.
Aim for a variety of tags, including broad categories, specific keywords, and potential sub-genres. If it's a famous website
you may also include a tag for the website. If the tag is not generic enough, don't include it. Aim for 10-15 tags.
If there are no good tags, don't emit any. You must respond in valid JSON with the key "tags" and the value is list of tags.
Don't wrap the response in a markdown code.`;
const TEXT_PROMPT_BASE = `
I'm building a read-it-later app and I need your help with automatic tagging.
Please analyze the text after the sentence "CONTENT START HERE:" and suggest relevant tags that describe its key themes, topics, and main ideas.
Aim for a variety of tags, including broad categories, specific keywords, and potential sub-genres. If it's a famous website
you may also include a tag for the website. If the tag is not generic enough, don't include it. Aim for 3-5 tags. If there are no good tags, don't emit any.
The content can include text for cookie consent and privacy policy, ignore those while tagging.
You must respond in JSON with the key "tags" and the value is list of tags.
CONTENT START HERE:
`;
function buildPrompt(
bookmark: NonNullable<Awaited<ReturnType<typeof fetchBookmark>>>,
) {
if (bookmark.link) {
if (!bookmark.link.description && !bookmark.link.content) {
throw new Error(
`No content found for link "${bookmark.id}". Skipping ...`,
);
}
let content = bookmark.link.content;
if (content) {
let words = content.split(" ");
if (words.length > 2000) {
words = words.slice(2000);
content = words.join(" ");
}
}
return `
${TEXT_PROMPT_BASE}
URL: ${bookmark.link.url}
Title: ${bookmark.link.title ?? ""}
Description: ${bookmark.link.description ?? ""}
Content: ${content ?? ""}
`;
}
if (bookmark.text) {
// TODO: Ensure that the content doesn't exceed the context length of openai
return `
${TEXT_PROMPT_BASE}
${bookmark.text.text}
`;
}
throw new Error("Unknown bookmark type");
}
async function fetchBookmark(linkId: string) {
return await db.query.bookmarks.findFirst({
where: eq(bookmarks.id, linkId),
with: {
link: true,
text: true,
asset: true,
},
});
}
async function inferTagsFromImage(
jobId: string,
bookmark: NonNullable<Awaited<ReturnType<typeof fetchBookmark>>>,
openai: OpenAI,
) {
const { asset, metadata } = await readAsset({
userId: bookmark.userId,
assetId: bookmark.asset.assetId,
});
if (!asset) {
throw new Error(`[openai][${jobId}] AssetId ${bookmark.asset.assetId} for bookmark ${bookmark.id} not found`);
}
const base64 = asset.toString('base64');
const chatCompletion = await openai.chat.completions.create({
model: "gpt-4-vision-preview",
messages: [
{
role: "user",
content: [
{ type: "text", text: IMAGE_PROMPT_BASE },
{
type: "image_url",
image_url: {
url: `data:${metadata.contentType};base64,${base64}`,
detail: "low",
},
},
],
},
],
max_tokens: 2000,
});
const response = chatCompletion.choices[0].message.content;
if (!response) {
throw new Error(`[openai][${jobId}] Got no message content from OpenAI`);
}
return { response, totalTokens: chatCompletion.usage?.total_tokens };
}
async function inferTagsFromText(
jobId: string,
bookmark: NonNullable<Awaited<ReturnType<typeof fetchBookmark>>>,
openai: OpenAI,
) {
const chatCompletion = await openai.chat.completions.create({
messages: [{ role: "system", content: buildPrompt(bookmark) }],
model: "gpt-3.5-turbo-0125",
response_format: { type: "json_object" },
});
const response = chatCompletion.choices[0].message.content;
if (!response) {
throw new Error(`[openai][${jobId}] Got no message content from OpenAI`);
}
return { response, totalTokens: chatCompletion.usage?.total_tokens };
}
async function inferTags(
jobId: string,
bookmark: NonNullable<Awaited<ReturnType<typeof fetchBookmark>>>,
openai: OpenAI,
) {
let response;
if (bookmark.link || bookmark.text) {
response = await inferTagsFromText(jobId, bookmark, openai);
} else if (bookmark.asset) {
response = await inferTagsFromImage(jobId, bookmark, openai);
} else {
throw new Error(`[openai][${jobId}] Unsupported bookmark type`);
}
try {
let tags = openAIResponseSchema.parse(JSON.parse(response.response)).tags;
logger.info(
`[openai][${jobId}] Inferring tag for bookmark "${bookmark.id}" used ${response.totalTokens} tokens and inferred: ${tags}`,
);
// Sometimes the tags contain the hashtag symbol, let's strip them out if they do.
tags = tags.map((t) => {
if (t.startsWith("#")) {
return t.slice(1);
}
return t;
});
return tags;
} catch (e) {
throw new Error(
`[openai][${jobId}] Failed to parse JSON response from OpenAI: ${e}`,
);
}
}
async function connectTags(
bookmarkId: string,
newTags: string[],
userId: string,
) {
if (newTags.length == 0) {
return;
}
await db.transaction(async (tx) => {
// Create tags that didn't exist previously
await tx
.insert(bookmarkTags)
.values(
newTags.map((t) => ({
name: t,
userId,
})),
)
.onConflictDoNothing();
const newTagIds = (
await tx.query.bookmarkTags.findMany({
where: and(
eq(bookmarkTags.userId, userId),
inArray(bookmarkTags.name, newTags),
),
columns: {
id: true,
},
})
).map((r) => r.id);
// Delete old AI tags
await tx
.delete(tagsOnBookmarks)
.where(
and(
eq(tagsOnBookmarks.attachedBy, "ai"),
eq(tagsOnBookmarks.bookmarkId, bookmarkId),
),
);
// Attach new ones
await tx
.insert(tagsOnBookmarks)
.values(
newTagIds.map((tagId) => ({
tagId,
bookmarkId,
attachedBy: "ai" as const,
})),
)
.onConflictDoNothing();
});
}
async function runOpenAI(job: Job<ZOpenAIRequest, void>) {
const jobId = job.id || "unknown";
const { openAI } = serverConfig;
if (!openAI.apiKey) {
logger.debug(
`[openai][${jobId}] OpenAI is not configured, nothing to do now`,
);
return;
}
const openai = new OpenAI({
apiKey: openAI.apiKey,
});
const request = zOpenAIRequestSchema.safeParse(job.data);
if (!request.success) {
throw new Error(
`[openai][${jobId}] Got malformed job request: ${request.error.toString()}`,
);
}
const { bookmarkId } = request.data;
const bookmark = await fetchBookmark(bookmarkId);
if (!bookmark) {
throw new Error(
`[openai][${jobId}] bookmark with id ${bookmarkId} was not found`,
);
}
const tags = await inferTags(jobId, bookmark, openai);
await connectTags(bookmarkId, tags, bookmark.userId);
// Update the search index
SearchIndexingQueue.add("search_indexing", {
bookmarkId,
type: "index",
});
}
|