aboutsummaryrefslogtreecommitdiffstats
path: root/apps/workers/openaiWorker.ts
blob: c8b2770e00f8907e9beffeee878ad8600e1f95f0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import { and, Column, eq, inArray, sql } from "drizzle-orm";
import { DequeuedJob, Runner } from "liteque";
import { buildImpersonatingTRPCClient } from "trpc";
import { z } from "zod";

import type { InferenceClient } from "@karakeep/shared/inference";
import type { ZOpenAIRequest } from "@karakeep/shared/queues";
import { db } from "@karakeep/db";
import {
  bookmarks,
  bookmarkTags,
  customPrompts,
  tagsOnBookmarks,
} from "@karakeep/db/schema";
import { readAsset } from "@karakeep/shared/assetdb";
import serverConfig from "@karakeep/shared/config";
import { InferenceClientFactory } from "@karakeep/shared/inference";
import logger from "@karakeep/shared/logger";
import { buildImagePrompt, buildTextPrompt } from "@karakeep/shared/prompts";
import {
  OpenAIQueue,
  triggerRuleEngineOnEvent,
  triggerSearchReindex,
  triggerWebhook,
  zOpenAIRequestSchema,
} from "@karakeep/shared/queues";

const openAIResponseSchema = z.object({
  tags: z.array(z.string()),
});

function tagNormalizer(col: Column) {
  function normalizeTag(tag: string) {
    return tag.toLowerCase().replace(/[ \-_]/g, "");
  }

  return {
    normalizeTag,
    sql: sql`lower(replace(replace(replace(${col}, ' ', ''), '-', ''), '_', ''))`,
  };
}

async function attemptMarkTaggingStatus(
  jobData: object | undefined,
  status: "success" | "failure",
) {
  if (!jobData) {
    return;
  }
  try {
    const request = zOpenAIRequestSchema.parse(jobData);
    await db
      .update(bookmarks)
      .set({
        taggingStatus: status,
      })
      .where(eq(bookmarks.id, request.bookmarkId));
  } catch (e) {
    logger.error(`Something went wrong when marking the tagging status: ${e}`);
  }
}

export class OpenAiWorker {
  static build() {
    logger.info("Starting inference worker ...");
    const worker = new Runner<ZOpenAIRequest>(
      OpenAIQueue,
      {
        run: runOpenAI,
        onComplete: async (job) => {
          const jobId = job.id;
          logger.info(`[inference][${jobId}] Completed successfully`);
          await attemptMarkTaggingStatus(job.data, "success");
        },
        onError: async (job) => {
          const jobId = job.id;
          logger.error(
            `[inference][${jobId}] inference job failed: ${job.error}\n${job.error.stack}`,
          );
          if (job.numRetriesLeft == 0) {
            await attemptMarkTaggingStatus(job?.data, "failure");
          }
        },
      },
      {
        concurrency: 1,
        pollIntervalMs: 1000,
        timeoutSecs: serverConfig.inference.jobTimeoutSec,
      },
    );

    return worker;
  }
}

async function buildPrompt(
  bookmark: NonNullable<Awaited<ReturnType<typeof fetchBookmark>>>,
) {
  const prompts = await fetchCustomPrompts(bookmark.userId, "text");
  if (bookmark.link) {
    if (!bookmark.link.description && !bookmark.link.content) {
      throw new Error(
        `No content found for link "${bookmark.id}". Skipping ...`,
      );
    }

    const content = bookmark.link.content;
    return buildTextPrompt(
      serverConfig.inference.inferredTagLang,
      prompts,
      `URL: ${bookmark.link.url}
Title: ${bookmark.link.title ?? ""}
Description: ${bookmark.link.description ?? ""}
Content: ${content ?? ""}`,
      serverConfig.inference.contextLength,
    );
  }

  if (bookmark.text) {
    return buildTextPrompt(
      serverConfig.inference.inferredTagLang,
      prompts,
      bookmark.text.text ?? "",
      serverConfig.inference.contextLength,
    );
  }

  throw new Error("Unknown bookmark type");
}

async function fetchBookmark(linkId: string) {
  return await db.query.bookmarks.findFirst({
    where: eq(bookmarks.id, linkId),
    with: {
      link: true,
      text: true,
      asset: true,
    },
  });
}

async function inferTagsFromImage(
  jobId: string,
  bookmark: NonNullable<Awaited<ReturnType<typeof fetchBookmark>>>,
  inferenceClient: InferenceClient,
  abortSignal: AbortSignal,
) {
  const { asset, metadata } = await readAsset({
    userId: bookmark.userId,
    assetId: bookmark.asset.assetId,
  });

  if (!asset) {
    throw new Error(
      `[inference][${jobId}] AssetId ${bookmark.asset.assetId} for bookmark ${bookmark.id} not found`,
    );
  }

  const base64 = asset.toString("base64");
  return inferenceClient.inferFromImage(
    buildImagePrompt(
      serverConfig.inference.inferredTagLang,
      await fetchCustomPrompts(bookmark.userId, "images"),
    ),
    metadata.contentType,
    base64,
    { schema: openAIResponseSchema, abortSignal },
  );
}

async function fetchCustomPrompts(
  userId: string,
  appliesTo: "text" | "images",
) {
  const prompts = await db.query.customPrompts.findMany({
    where: and(
      eq(customPrompts.userId, userId),
      inArray(customPrompts.appliesTo, ["all_tagging", appliesTo]),
    ),
    columns: {
      text: true,
    },
  });

  let promptTexts = prompts.map((p) => p.text);
  if (containsTagsPlaceholder(prompts)) {
    promptTexts = await replaceTagsPlaceholders(promptTexts, userId);
  }

  return promptTexts;
}

async function replaceTagsPlaceholders(
  prompts: string[],
  userId: string,
): Promise<string[]> {
  const api = await buildImpersonatingTRPCClient(userId);
  const tags = (await api.tags.list()).tags;
  const tagsString = `[${tags.map((tag) => tag.name).join(", ")}]`;
  const aiTagsString = `[${tags
    .filter((tag) => tag.numBookmarksByAttachedType.human ?? 0 == 0)
    .map((tag) => tag.name)
    .join(", ")}]`;
  const userTagsString = `[${tags
    .filter((tag) => tag.numBookmarksByAttachedType.human ?? 0 > 0)
    .map((tag) => tag.name)
    .join(", ")}]`;

  return prompts.map((p) =>
    p
      .replaceAll("$tags", tagsString)
      .replaceAll("$aiTags", aiTagsString)
      .replaceAll("$userTags", userTagsString),
  );
}

function containsTagsPlaceholder(prompts: { text: string }[]): boolean {
  return (
    prompts.filter(
      (p) =>
        p.text.includes("$tags") ||
        p.text.includes("$aiTags") ||
        p.text.includes("$userTags"),
    ).length > 0
  );
}

async function inferTagsFromPDF(
  _jobId: string,
  bookmark: NonNullable<Awaited<ReturnType<typeof fetchBookmark>>>,
  inferenceClient: InferenceClient,
  abortSignal: AbortSignal,
) {
  const prompt = buildTextPrompt(
    serverConfig.inference.inferredTagLang,
    await fetchCustomPrompts(bookmark.userId, "text"),
    `Content: ${bookmark.asset.content}`,
    serverConfig.inference.contextLength,
  );
  return inferenceClient.inferFromText(prompt, {
    schema: openAIResponseSchema,
    abortSignal,
  });
}

async function inferTagsFromText(
  bookmark: NonNullable<Awaited<ReturnType<typeof fetchBookmark>>>,
  inferenceClient: InferenceClient,
  abortSignal: AbortSignal,
) {
  return await inferenceClient.inferFromText(await buildPrompt(bookmark), {
    schema: openAIResponseSchema,
    abortSignal,
  });
}

async function inferTags(
  jobId: string,
  bookmark: NonNullable<Awaited<ReturnType<typeof fetchBookmark>>>,
  inferenceClient: InferenceClient,
  abortSignal: AbortSignal,
) {
  let response;
  if (bookmark.link || bookmark.text) {
    response = await inferTagsFromText(bookmark, inferenceClient, abortSignal);
  } else if (bookmark.asset) {
    switch (bookmark.asset.assetType) {
      case "image":
        response = await inferTagsFromImage(
          jobId,
          bookmark,
          inferenceClient,
          abortSignal,
        );
        break;
      case "pdf":
        response = await inferTagsFromPDF(
          jobId,
          bookmark,
          inferenceClient,
          abortSignal,
        );
        break;
      default:
        throw new Error(`[inference][${jobId}] Unsupported bookmark type`);
    }
  } else {
    throw new Error(`[inference][${jobId}] Unsupported bookmark type`);
  }

  if (!response) {
    throw new Error(`[inference][${jobId}] Inference response is empty`);
  }

  try {
    let tags = openAIResponseSchema.parse(JSON.parse(response.response)).tags;
    logger.info(
      `[inference][${jobId}] Inferring tag for bookmark "${bookmark.id}" used ${response.totalTokens} tokens and inferred: ${tags}`,
    );

    // Sometimes the tags contain the hashtag symbol, let's strip them out if they do.
    // Additionally, trim the tags to prevent whitespaces at the beginning/the end of the tag.
    tags = tags.map((t) => {
      let tag = t;
      if (tag.startsWith("#")) {
        tag = t.slice(1);
      }
      return tag.trim();
    });

    return tags;
  } catch (e) {
    const responseSneak = response.response.substring(0, 20);
    throw new Error(
      `[inference][${jobId}] The model ignored our prompt and didn't respond with the expected JSON: ${JSON.stringify(e)}. Here's a sneak peak from the response: ${responseSneak}`,
    );
  }
}

async function connectTags(
  bookmarkId: string,
  inferredTags: string[],
  userId: string,
) {
  if (inferredTags.length == 0) {
    return;
  }

  await db.transaction(async (tx) => {
    // Attempt to match exiting tags with the new ones
    const { matchedTagIds, notFoundTagNames } = await (async () => {
      const { normalizeTag, sql: normalizedTagSql } = tagNormalizer(
        bookmarkTags.name,
      );
      const normalizedInferredTags = inferredTags.map((t) => ({
        originalTag: t,
        normalizedTag: normalizeTag(t),
      }));

      const matchedTags = await tx.query.bookmarkTags.findMany({
        where: and(
          eq(bookmarkTags.userId, userId),
          inArray(
            normalizedTagSql,
            normalizedInferredTags.map((t) => t.normalizedTag),
          ),
        ),
      });

      const matchedTagIds = matchedTags.map((r) => r.id);
      const notFoundTagNames = normalizedInferredTags
        .filter(
          (t) =>
            !matchedTags.some(
              (mt) => normalizeTag(mt.name) === t.normalizedTag,
            ),
        )
        .map((t) => t.originalTag);

      return { matchedTagIds, notFoundTagNames };
    })();

    // Create tags that didn't exist previously
    let newTagIds: string[] = [];
    if (notFoundTagNames.length > 0) {
      newTagIds = (
        await tx
          .insert(bookmarkTags)
          .values(
            notFoundTagNames.map((t) => ({
              name: t,
              userId,
            })),
          )
          .onConflictDoNothing()
          .returning()
      ).map((t) => t.id);
    }

    // Delete old AI tags
    const detachedTags = await tx
      .delete(tagsOnBookmarks)
      .where(
        and(
          eq(tagsOnBookmarks.attachedBy, "ai"),
          eq(tagsOnBookmarks.bookmarkId, bookmarkId),
        ),
      )
      .returning();

    const allTagIds = new Set([...matchedTagIds, ...newTagIds]);

    // Attach new ones
    const attachedTags = await tx
      .insert(tagsOnBookmarks)
      .values(
        [...allTagIds].map((tagId) => ({
          tagId,
          bookmarkId,
          attachedBy: "ai" as const,
        })),
      )
      .onConflictDoNothing()
      .returning();

    await triggerRuleEngineOnEvent(bookmarkId, [
      ...detachedTags.map((t) => ({
        type: "tagRemoved" as const,
        tagId: t.tagId,
      })),
      ...attachedTags.map((t) => ({
        type: "tagAdded" as const,
        tagId: t.tagId,
      })),
    ]);
  });
}

async function runOpenAI(job: DequeuedJob<ZOpenAIRequest>) {
  const jobId = job.id;

  const inferenceClient = InferenceClientFactory.build();
  if (!inferenceClient) {
    logger.debug(
      `[inference][${jobId}] No inference client configured, nothing to do now`,
    );
    return;
  }

  const request = zOpenAIRequestSchema.safeParse(job.data);
  if (!request.success) {
    throw new Error(
      `[inference][${jobId}] Got malformed job request: ${request.error.toString()}`,
    );
  }

  const { bookmarkId } = request.data;
  const bookmark = await fetchBookmark(bookmarkId);
  if (!bookmark) {
    throw new Error(
      `[inference][${jobId}] bookmark with id ${bookmarkId} was not found`,
    );
  }

  logger.info(
    `[inference][${jobId}] Starting an inference job for bookmark with id "${bookmark.id}"`,
  );

  const tags = await inferTags(
    jobId,
    bookmark,
    inferenceClient,
    job.abortSignal,
  );

  await connectTags(bookmarkId, tags, bookmark.userId);

  // Trigger a webhook
  await triggerWebhook(bookmarkId, "ai tagged");

  // Update the search index
  await triggerSearchReindex(bookmarkId);
}