1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
import type { ZTagStyle } from "./types/users";
import { getCuratedTagsPrompt, getTagStylePrompt } from "./utils/tag";
/**
* Remove duplicate whitespaces to avoid tokenization issues
*/
function preprocessContent(content: string) {
return content.replace(/(\s){10,}/g, "$1");
}
export function buildImagePrompt(
lang: string,
customPrompts: string[],
tagStyle: ZTagStyle,
curatedTags?: string[],
) {
const tagStyleInstruction = getTagStylePrompt(tagStyle);
const curatedInstruction = getCuratedTagsPrompt(curatedTags);
return `
You are an expert whose responsibility is to help with automatic text tagging for a read-it-later/bookmarking app.
Analyze the attached image and suggest relevant tags that describe its key themes, topics, and main ideas. The rules are:
- Aim for a variety of tags, including broad categories, specific keywords, and potential sub-genres.
- The tags must be in ${lang}.
- If the tag is not generic enough, don't include it.
- Aim for 10-15 tags.
- If there are no good tags, don't emit any.
${curatedInstruction}
${tagStyleInstruction}
${customPrompts && customPrompts.map((p) => `- ${p}`).join("\n")}
You must respond in valid JSON with the key "tags" and the value is list of tags. Don't wrap the response in a markdown code.`;
}
/**
* Construct tagging prompt for text content
*/
export function constructTextTaggingPrompt(
lang: string,
customPrompts: string[],
content: string,
tagStyle: ZTagStyle,
curatedTags?: string[],
): string {
const tagStyleInstruction = getTagStylePrompt(tagStyle);
const curatedInstruction = getCuratedTagsPrompt(curatedTags);
return `
You are an expert whose responsibility is to help with automatic tagging for a read-it-later/bookmarking app.
Analyze the TEXT_CONTENT below and suggest relevant tags that describe its key themes, topics, and main ideas. The rules are:
- Aim for a variety of tags, including broad categories, specific keywords, and potential sub-genres.
- The tags must be in ${lang}.
- If the tag is not generic enough, don't include it.
- Do NOT generate tags related to:
- An error page (404, 403, blocked, not found, dns errors)
- Boilerplate content (cookie consent, login walls, GDPR notices)
- Aim for 3-5 tags.
- If there are no good tags, leave the array empty.
${curatedInstruction}
${tagStyleInstruction}
${customPrompts && customPrompts.map((p) => `- ${p}`).join("\n")}
<TEXT_CONTENT>
${content}
</TEXT_CONTENT>
You must respond in JSON with the key "tags" and the value is an array of string tags.`;
}
/**
* Construct summary prompt
*/
export function constructSummaryPrompt(
lang: string,
customPrompts: string[],
content: string,
): string {
return `
Summarize the following content responding ONLY with the summary. You MUST follow the following rules:
- Summary must be in 3-4 sentences.
- The summary must be in ${lang}.
${customPrompts && customPrompts.map((p) => `- ${p}`).join("\n")}
${content}`;
}
/**
* Build text tagging prompt without truncation (for previews/UI)
*/
export function buildTextPromptUntruncated(
lang: string,
customPrompts: string[],
content: string,
tagStyle: ZTagStyle,
curatedTags?: string[],
): string {
return constructTextTaggingPrompt(
lang,
customPrompts,
preprocessContent(content),
tagStyle,
curatedTags,
);
}
/**
* Build summary prompt without truncation (for previews/UI)
*/
export function buildSummaryPromptUntruncated(
lang: string,
customPrompts: string[],
content: string,
): string {
return constructSummaryPrompt(
lang,
customPrompts,
preprocessContent(content),
);
}
/**
* Build OCR prompt for extracting text from images using LLM
*/
export function buildOCRPrompt(): string {
return `You are an OCR (Optical Character Recognition) expert. Your task is to extract ALL text from this image.
Rules:
- Extract every piece of text visible in the image, including titles, body text, captions, labels, watermarks, and any other textual content.
- Preserve the original structure and formatting as much as possible (e.g., paragraphs, lists, headings).
- If text appears in multiple columns, read from left to right, top to bottom.
- If text is partially obscured or unclear, make your best attempt and indicate uncertainty with [unclear] if needed.
- Do not add any commentary, explanations, or descriptions of non-text elements.
- If there is no text in the image, respond with an empty string.
- Output ONLY the extracted text, nothing else.`;
}
|