1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Open HaLow Mesh Network System</title>
<style>
:root {
--bg: #0f1419;
--panel: #161d24;
--text: #e6e9ec;
--muted: #a9b0b7;
--accent: #4da3ff;
--border: #2a3440;
}
* {
box-sizing: border-box;
font-family: system-ui, -apple-system, Segoe UI, Roboto, Ubuntu, Cantarell, "Helvetica Neue", Arial, sans-serif;
}
body {
margin: 0;
background-color: var(--bg);
color: var(--text);
line-height: 1.6;
}
header {
padding: 3rem 2rem;
border-bottom: 1px solid var(--border);
background: linear-gradient(180deg, #111821, #0f1419);
}
header h1 {
margin: 0 0 0.5rem 0;
font-size: 2.4rem;
font-weight: 600;
}
header p {
max-width: 900px;
color: var(--muted);
font-size: 1.05rem;
}
section {
padding: 3rem 2rem;
border-bottom: 1px solid var(--border);
}
.container {
max-width: 1100px;
margin: 0 auto;
}
h2 {
font-size: 1.6rem;
font-weight: 600;
margin-bottom: 1rem;
}
h3 {
font-size: 1.15rem;
font-weight: 600;
margin-top: 2rem;
}
p {
margin: 0.5rem 0 1rem 0;
}
ul {
padding-left: 1.2rem;
}
li {
margin-bottom: 0.6rem;
}
.grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(280px, 1fr));
gap: 1.5rem;
margin-top: 2rem;
}
.card {
background-color: var(--panel);
padding: 1.5rem;
border: 1px solid var(--border);
border-radius: 6px;
}
.card h3 {
margin-top: 0;
}
.badge {
display: inline-block;
padding: 0.2rem 0.5rem;
font-size: 0.75rem;
border: 1px solid var(--border);
border-radius: 4px;
color: var(--muted);
margin-right: 0.4rem;
}
footer {
padding: 2rem;
background-color: #0b0f14;
color: var(--muted);
font-size: 0.85rem;
}
footer p {
max-width: 1100px;
margin: 0 auto;
}
</style>
</head>
<body>
<header>
<div class="container">
<h1>Open HaLow Mesh Network System</h1>
<p>
A standards-based, infrastructure-independent wireless backbone for secure transmission of messages
and moving imagery in contested or infrastructure-denied environments. Designed to interconnect
heterogeneous devices without vendor lock-in while maintaining cryptographic agility against
emerging post-quantum threats.
</p>
</div>
</header>
<section>
<div class="container">
<h2>System Description</h2>
<p>
The Open HaLow Mesh Network System is a modular, sub-GHz wireless networking platform built on
IEEE 802.11ah (Wi-Fi HaLow) and open IP networking standards. It provides long-range, low-power,
and obstacle-tolerant connectivity suitable for realistic field deployments where fixed
infrastructure is unavailable, degraded, or denied.
</p>
<p>
Unlike proprietary tactical radios or vertically integrated ecosystems, the system is designed
explicitly as an <strong>open network backbone</strong>. Any compliant device—sensors, cameras,
edge compute nodes, command terminals, or legacy IP equipment—can be integrated using standard
Ethernet, Wi-Fi, or IP interfaces without dependence on a single vendor or waveform provider.
</p>
<div class="grid">
<div class="card">
<h3>Radio Layer</h3>
<ul>
<li>IEEE 802.11ah (sub-1 GHz) for long-range backhaul</li>
<li>Optional 2.4 GHz Wi-Fi for local device aggregation</li>
<li>Adaptive modulation and coding per link conditions</li>
</ul>
</div>
<div class="card">
<h3>Network Layer</h3>
<ul>
<li>IP-native architecture (IPv4 / IPv6)</li>
<li>Self-forming, self-healing mesh topology</li>
<li>Open routing protocols (802.11s, BATMAN-adv, or equivalent)</li>
</ul>
</div>
<div class="card">
<h3>Application Layer</h3>
<ul>
<li>Secure messaging and telemetry</li>
<li>Moving imagery (video streams or buffered clips)</li>
<li>Store-and-forward operation under constrained links</li>
</ul>
</div>
</div>
</div>
</section>
<section>
<div class="container">
<h2>Operational Philosophy</h2>
<p>
The system is engineered for <strong>realistic deployment conditions</strong>, not laboratory
throughput benchmarks. Range, robustness, and interoperability are prioritized over peak data rates.
Moving imagery is supported through adaptive encoding, prioritization, and bandwidth-aware routing.
</p>
<ul>
<li>No centralized controller required; operation continues under partial network loss.</li>
<li>Nodes may be fixed, vehicle-mounted, or carried by personnel.</li>
<li>Network scales horizontally by adding nodes, not by replacing infrastructure.</li>
</ul>
<p class="badge">Off-grid</p>
<p class="badge">Infrastructure-independent</p>
<p class="badge">Interoperable</p>
</div>
</section>
<section>
<div class="container">
<h2>Security Architecture</h2>
<p>
Security is implemented as a layered, standards-based architecture rather than proprietary
obscurity. The system supports modern encryption today while maintaining
<strong>post-quantum cryptographic agility</strong> for future transition.
</p>
<h3>Current-Generation Security</h3>
<ul>
<li>WPA3-based link encryption and mutual authentication</li>
<li>Certificate-based device identity and access control</li>
<li>Network segmentation and policy-based routing</li>
</ul>
<h3>Post-Quantum Readiness</h3>
<ul>
<li>Cryptographic agility allowing replacement of key exchange algorithms</li>
<li>Support for hybrid classical + post-quantum key establishment</li>
<li>Separation of radio transport from cryptographic services to avoid hardware lock-in</li>
</ul>
<p>
The system does not claim immunity to electromagnetic detection or jamming. Emission control,
power management, and spectrum discipline remain operational responsibilities.
</p>
</div>
</section>
<section>
<div class="container">
<h2>Manufacturing and Supply Considerations</h2>
<p>
The platform is built from industrial-grade, commercially available components using standard
electronics manufacturing processes. This enables predictable scaling, controlled configuration
management, and long-term sustainment without reliance on proprietary silicon or closed firmware.
</p>
<ul>
<li>Modular hardware design with defined RF, compute, and power subsystems</li>
<li>Open firmware stack enabling audited builds and controlled updates</li>
<li>Configurable enclosures for fixed, vehicular, or portable roles</li>
<li>Export-compliant components with regional frequency variants</li>
</ul>
</div>
</section>
<section>
<div class="container">
<h2>Limitations and Constraints</h2>
<ul>
<li>Throughput decreases with distance and hop count; not intended for broadband video at kilometer ranges.</li>
<li>Sub-1 GHz operation is subject to regional regulatory limits on power and duty cycle.</li>
<li>Not a replacement for wideband SDR or SATCOM systems in high-tempo maneuver warfare.</li>
<li>Electronic warfare resilience depends on deployment discipline and network planning.</li>
</ul>
</div>
</section>
<footer>
<p>
This product is intended for professional and governmental use. Performance characteristics depend on
deployment geometry, spectrum conditions, and configuration. Specifications subject to change without notice.
</p>
</footer>
</body>
</html>
|